Part Number Hot Search : 
RT917407 VN1010 100336 NMF0513D 2A102 D4C0212N LBN70A52 STP20N
Product Description
Full Text Search
 

To Download NFT6003 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  NFT6003 / irf5305 hexfet ? power mosfet fifth generation hexfets from international rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. this benefit, combined with the fast switching speed and ruggedized device design that hexfet power mosfets are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications. the to-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 watts. the low thermal resistance and low package cost of the to-220 contribute to its wide acceptance throughout the industry. parameter max. units i d @ t c = 25c continuous drain current, v gs @ -10v -31 i d @ t c = 100c continuous drain current, v gs @ -10v -22 a i dm pulsed drain current ? -110 p d @t c = 25c power dissipation 110 w linear derating factor 0.71 w/c v gs gate-to-source voltage 20 v e as single pulse avalanche energy ? 280 mj i ar avalanche current ? -16 a e ar repetitive avalanche energy ? 11 mj dv/dt peak diode recovery dv/dt ? -5.0 v/ns t j operating junction and -55 to + 175 t stg storage temperature range soldering temperature, for 10 seconds 300 (1.6mm from case ) c mounting torque, 6-32 or m3 srew 10 lbf?in (1.1n?m) absolute maximum ratings parameter typ. max. units r q jc junction-to-case CCC 1.4 r q cs case-to-sink, flat, greased surface 0.50 CCC c/w r q ja junction-to-ambient CCC 62 thermal resistance v dss = -55v r ds(on) = 0.06 w i d = -31a t o -22 0 ab l advanced process technology l dynamic dv/dt rating l 175c operating temperature l fast switching l p-channel l fully avalanche rated description s d g 1 / 8 www.kersemi.com
parameter min. typ. max. units conditions i s continuous source current mosfet symbol (body diode) CCC CCC showing the i sm pulsed source current integral reverse (body diode) ? CCC CCC p-n junction diode. v sd diode forward voltage CCC CCC -1.3 v t j = 25c, i s = -16a, v gs = 0v ? t rr reverse recovery time CCC 71 110 ns t j = 25c, i f = -16a q rr reverse recoverycharge CCC 170 250 nc di/dt = -100a/s ? source-drain ratings and characteristics parameter min. typ. max. units conditions v (br)dss drain-to-source breakdown voltage -55 CCC CCC v v gs = 0v, i d = -250a d v (br)dss / d t j breakdown voltage temp. coefficient CCC -0.034 CCC v/c reference to 25c, i d = -1ma r ds(on) static drain-to-source on-resistance CCC CCC 0.06 w v gs = -10v, i d = -16a ? v gs(th) gate threshold voltage -2.0 CCC -4.0 v v ds = v gs , i d = -250a g fs forward transconductance 8.0 CCC CCC s v ds = -25v, i d = -16a CCC CCC -25 a v ds = -55v, v gs = 0v CCC CCC -250 v ds = -44v, v gs = 0v, t j = 150c gate-to-source forward leakage CCC CCC 100 v gs = 20v gate-to-source reverse leakage CCC CCC -100 na v gs = -20v q g total gate charge CCC CCC 63 i d = -16a q gs gate-to-source charge CCC CCC 13 nc v ds = -44v q gd gate-to-drain ("miller") charge CCC CCC 29 v gs = -10v, see fig. 6 and 13 ? t d(on) turn-on delay time CCC 14 CCC v dd = -28v t r rise time CCC 66 CCC i d = -16a t d(off) turn-off delay time CCC 39 CCC r g = 6.8 w t f fall time CCC 63 CCC r d = 1.6 w, see fig. 10 ? between lead, CCC CCC 6mm (0.25in.) from package and center of die contact c iss input capacitance CCC 1200 CCC v gs = 0v c oss output capacitance CCC 520 CCC pf v ds = -25v c rss reverse transfer capacitance CCC 250 CCC ? = 1.0mhz, see fig. 5 nh electrical characteristics @ t j = 25c (unless otherwise specified) l d internal drain inductance l s internal source inductance CCC CCC i gss ns 4.5 7.5 i dss drain-to-source leakage current ? repetitive rating; pulse width limited by max. junction temperature. ( see fig. 11 ) ? i sd -16a, di/dt -280a/s, v dd v (br)dss , t j 175c notes: ? v dd = -25v, starting t j = 25c, l = 2.1mh r g = 25 w , i as = -16a. (see figure 12) ? pulse width 300s; duty cycle 2%. -31 -110 a s d g s d g 2 / 8 NFT6003 / irf5305 www.kersemi.com
fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics 1 10 100 1000 0.1 1 10 100 d ds 20s pulse w idth t = 25c c a -i , d rain-to-source c urrent (a) -v , drain-to-source voltage (v) vgs to p - 15v - 10v - 8.0v - 7.0v - 6.0v - 5.5v - 5.0v bot tom - 4.5v -4.5v 1 10 100 1000 0.1 1 10 100 d ds a -i , drain-to-source current (a) -v , drain-to-source volta g e ( v ) vgs top - 15v - 10v - 8.0v - 7.0v - 6.0v - 5.5v - 5.0v bottom - 4.5v -4.5v 20 s pulse w idth t = 175c c 1 10 100 45678910 t = 25c j t = 175c j a v = -25v 20s pulse w idth ds gs -v , gate-to-source volta g e ( v ) d -i , drain-to-source c urrent (a) 0.0 0.5 1.0 1.5 2.0 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 j t , junction temperature (c) r , drain-to-source on resistance ds(on) (n orm alized) a i = -27a v = -10v d gs j j 3 / 8 NFT6003 / irf5305 www.kersemi.com
fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 0 500 1000 1500 2000 2500 1 10 100 c, capacitance (pf) a v = 0v , f = 1mhz c = c + c , c shorte d c = c c = c + c gs iss g s g d ds rss g d oss ds g d c iss c oss c rss ds -v , drain-to-source volta g e ( v ) 0 4 8 12 16 20 0 102030405060 q , total g ate char g e ( nc ) g a for test circuit s ee figure 13 v = -44v v = -28v i = -16a gs -v , g ate-to-s ource v oltage (v) d ds ds 10 100 1000 0.4 0.8 1.2 1.6 2.0 t = 25c j v = 0v gs sd sd a -i , reverse drain current (a) -v , source-to-drain volta g e ( v ) t = 175c j 1 10 100 1000 1 10 100 ope ration in this area limite d by r ds(on) 100s 1ms 10ms a t = 25c t = 175c sin g le p u ls e c j ds -v , drain-to-source volta g e ( v ) d -i , drain current (a) 4 / 8 NFT6003 / irf5305 www.kersemi.com
fig 10a. switching time test circuit fig 10b. switching time waveforms fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature v ds -10v pulse width 1 s duty factor 0.1 % r d v gs v dd r g d.u.t. v ds 90% 10% v gs t d(on) t r t d(off) t f + - 25 50 75 100 125 150 175 0 5 10 15 20 25 30 35 t , case temperature ( c) -i , drain current (a) c d 0.01 0.1 1 10 0.00001 0.0001 0.001 0.01 0.1 notes: 1. duty factor d = t / t 2. peak t = p x z + t 1 2 j dm thjc c p t t dm 1 2 t , rectangular pulse duration (sec) thermal response (z ) 1 thjc 0.01 0.02 0.05 0.10 0.20 d = 0.50 single pulse (thermal response) 5 / 8 NFT6003 / irf5305 www.kersemi.com
fig 13b. gate charge test circuit fig 13a. basic gate charge waveform fig 12c. maximum avalanche energy vs. drain current q g q gs q gd v g charge -10v d.u.t. v ds i d i g -3ma v gs .3 m f 50k w .2 m f 12v current regulator same type as d.u.t. current sampling resistors + - 0 100 200 300 400 500 600 700 25 50 75 100 125 150 175 j e , single pulse avalanche energy (mj) as a startin g t , junction temperature ( c ) v = -25v i to p -6.6a -11a bottom -16a dd d fig 12b. unclamped inductive waveforms fig 12a. unclamped inductive test circuit t p v ( br ) dss i as r g i as 0.01 w t p d.u.t l v ds + - v dd driver a -20v 15v 6 / 8 NFT6003 / irf5305 www.kersemi.com
peak diode recovery dv/dt test circuit p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period + - + + + - - - ? ? ? r g v dd dv/dt controlled by r g i sd controlled by duty factor "d" d.u.t. - device under test d.u.t circuit layout considerations low stray inductance ground plane low leakage inductance current transformer ? * reverse polarity for p-channel ** use p-channel driver for p-channel measurements * v gs * ** [ ] [ ] *** v gs = 5.0v for logic level and 3v drive devices [ ] *** fig 14. for p-channel hexfets 7 / 8 NFT6003 / irf5305 www.kersemi.com
lead assignments 1 - gate 2 - drain 3 - sou rc e 4 - drain - b - 1.32 (.052) 1.22 (.048) 3x 0.55 (.022) 0.46 (.018) 2.92 (.115) 2.64 (.104) 4.69 (.185) 4.20 (.165) 3x 0.93 (.037) 0.69 (.027) 4.06 (.160) 3.55 (.140) 1.15 (.045) m in 6.47 (.255) 6.10 (.240) 3.78 (.149) 3.54 (.139) - a - 10.54 (.415) 10.29 (.405) 2.87 (.113) 2.62 (.103) 15.24 (.600) 14.84 (.584) 14.09 (.555) 13.47 (.530) 3x 1.40 (.055) 1.15 (.045) 2.54 (.100) 2x 0.36 (.014) m b a m 4 1 2 3 notes: 1 d im e n s io n in g & to l e r a n c ing p e r a n s i y 1 4.5m , 1 9 82. 3 o u t lin e c o n f o r m s to je d e c o u t lin e to -2 20 a b . 2 controlling dimension : inch 4 heatsink & lead measurements do n ot include burrs. part number inte rn at io n al r ec tifie r example : this is an irf1010 w ith a ss e m bly lo t co de 9b 1m assembly l ot co d e date code (yyw w ) yy = year ww = week 9246 irf1010 9b 1m a part marking information to-220ab package outline to-220ab outline dimensions are shown in millimeters (inches) 8 / 8 NFT6003 / irf5305 www.kersemi.com


▲Up To Search▲   

 
Price & Availability of NFT6003

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X